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Abstract 

 
Extracting spectrally homogeneous regions as features 

from hyperspectral and multispectral raster data has 
unique challenges when accurate shape preservation is a 
priority. We tackle this task by representing 
neighborhoods that contain heterogeneously classified 
pixels as a graph. We then use graph-cut based 
combinatorial optimization to eliminate spuriously 
classified pixels. After the region of interest is uniformly 
classified, we use a vectorization step to extract it as a 
feature. 
 

1. Introduction 
In remote sensing, one critical function for image 

analysts is the capability to identify regions in imagery 
that correspond to a particular object or material. 
Automatic extraction of image areas that represent a 
feature of interest requires two specific steps. The first 
step is to accurately classify the pixels that represent the 
region while minimizing misclassified pixels. Secondly, a 
vectorization step extracts a contiguous boundary along 
each classified region which, when paired with its geo-
location, can be inserted in a feature database independent 
of the image.  

We have implemented an algorithm, to be used by our 
commercial customers, that extracts spatially coherent 
regions which have been classified as a particular object or 
material. We apply this algorithm to all types of imagery, 
including standard 3-band, multispectral images, and 
hyperspectral images which contain non-visible bands. 
Robust automatic classification and coherent region 
extraction is especially relevant for hyperspectral images 
which have numerous bands making simultaneous 
visualization and therefore manual intervention difficult.  

While relying on traditional classification first to 
identify matched pixels, our contribution lies in the next 
step where we efficiently apply graph cuts based 
optimization to eliminate spuriously labeled pixels and 
extract spatially contiguous regions as intact features 
[1],[6]. In this paper we explain how we use the 

optimization method and also the feature extraction step. 
 

2. Problem Description 
The goal of classification algorithms is to label pixels 

which have spectral signatures that fall within a 
distribution defining a region of interest. A pixel belongs 
to a classification set when the distance, in feature space, 
between the pixel’s spectral signature and the signature of 
a representative set of pixels is small. Classification 
algorithms vary in how the feature vector (and therefore 
feature space) is defined, how the distance metric is 
defined, how a representative set of pixels or distribution 
is determined and in the algorithm by which pixels 
matches are identified. Nevertheless, they all share the 
concept of goodness-of-fit, a per pixel score measuring 
how well a pixel actually fits the target spectral 
distribution. Examples of supervised and unsupervised 
classification algorithms include clustering algorithms, 
support-vector machines, matched filter algorithms and 
neural networks to name a few [5]. Purely relying on 
spectral signatures, may not lead to good spatial 
localization of the pixels of interest. Spurious pixels could 
easily fall on the wrong side of the classification criteria 
and become incorrectly classified. Multiple spuriously 
classified pixels will degrade coherent region extraction 
[6].  

In the context of our software, users are allowed to 
determine class membership via supervised algorithms 
such as spectral angle metric and matched filters. Also, 
unsupervised classification algorithms are available to our 
users such as general clustering and constrained energy 
minimization. In addition, specialized algorithms such as 
NDVI (Normalized Difference Vegetation Index) or 
NDWI (Normalized Difference Water Index) are also 
implemented. Due to the varied contexts that determine 
which spectral classification is applied by our users, it is 
critical to allow a user to select the appropriate algorithm. 
Our goal is to provide a post-processing algorithm that 
outputs spatially consistent regions that can function with 
the goodness of fit metric of any classification algorithm.  

Post-processing with filters or morphological operators 
is often used to condition the classification results output 
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from spectral classification algorithms. These post-
processing steps tend to adversely modify the details of 
the region boundary and eliminate fine features. In our 
application, users have a low tolerance for the loss of fine 
details in the shape. Figure 1, is an example of a 
multispectral image of a harbor. In this example, the docks 
and pier are just a few pixels across and could easily be 
removed in an erosion/dilation step in the presence of 
enough spuriously classified pixels. 

3. Algorithm Summary 
Our goal is to accurately identify the boundary of a 

spatially consistent set of pixels that belong to a region of 
interest, with the intent of extracting that region as a 
distinct feature. We aim to minimize spurious pixels, 
while maximizing spatial consistency. Currently, we focus 
on only a single classification set at a time. We use graph-
cuts based combinatorial optimization to explicitly 
optimize the data and smoothing constraints [6]. Once 
spatially contiguous regions are identified, we delineate 
the boundary of the feature as a set of connected polylines 
using a custom vectorization algorithm.  

 

 
The input to our module is a set of scores, one per pixel 

in an image. The score denotes how strongly a pixel 
matched the target spectrum. The score, output from any 
one of several classification algorithms available to our 
users, measures the goodness-of-fit of a particular pixel. 
Using the scores from a user selected classification 
algorithm we compute a heterogeneity metric at each 
pixel. Each point with a non-zero heterogeneity metric 
serves as the center point of a neighborhood at which a 
graph will be initialized and which will be optimized to be 
spatially coherent. Using graph-cuts combinatorial 
optimization, we identify the partitioning of that 
neighborhood into pixels that either belong to the interior 

of the region of interest or to the exterior. 

4. Algorithm Details 

4.1. Identifying heterogeneous pixels 
Once we have a goodness-of-fit score per pixel, the first 
step of our algorithm calculates how heterogeneous a 
particular pixel is with respect to its 8 neighbors. The 
heterogeneity measure identifies pixels that could 
potentially be classified differently from their neighbors. 
Typically, these pixels have scores at the middle of the 
distribution and could have easily flipped classification. 
Therefore, we do not simply compute a difference 
between the pixel’s score and its neighbor’s score. We 
first identify if a pixel is statistically close to the threshold 
that identifies region interior with region exterior. If the 
pixel is close, we then use the difference in the score 
between the pixel and its neighbors, normalized by local 
standard deviation, as the heterogeneity measure. Thus at a 
given pixel (i,j), the heterogeneity measure (H(i,j) below) is 

H(i,j) = (1/(8sl))∑m,n|f(i,j)-f(m,n)| 
where f(i,j) is the goodness-of-fit score of the pixel, f(m,n) 

is the score at each neighbor and sl is the local standard 
deviation. If a pixel’s score indicates that it either strongly 
matched or strongly did not match the region of interest, 
the heterogeneity measure will be zero. 

Figure 1: Multispectral image of a harbor. In this example, our 
goal is to extract the regions containing water, while preserving 
fine details such as bridges and docks. Some areas on land have 
bodies of water that we need to include;  in the water there are 
vessels that we need to exclude. Subsequent figures show results 
of our algorithm in the rectangles delineated here.  

Figure 2: The above two areas show the result of simply 
classifying the water areas by spectral classification and then 
using a threshold to denote interior (green areas) vs exterior. The 
circles highlight areas containing many spurious classifications.  
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4.2. Graph initialized at heterogeneous 
neighborhoods 

At each point on an image where the heterogeneity 
measure is non-zero, we initialize a graph representing the 
data constraints and the homogeneity constraints on the 
local pixel distribution. Processing local neighborhoods is 
vital in our operational context for performance reasons. 
Our users deal with large, tiled imagery that is impractical 
to handle in its entirety. The spatial coherency constraint is 
inherently local since we are considering areas, typically 
at boundaries, with spuriously classified pixels. We justify 
optimizing over local neighborhoods for this reason. In 
our current implementation, the local neighborhood is 
empirically set to 10% of the tile size. We are 
investigating setting the neighborhood size (bounded by a 
maximum) to include all locally connected, heterogeneous 
pixels. 

The nodes of the graph represent the pixels within the 
neighborhood to be processed. Each node is connected, via 
an arc, to a source node and a sink node. The arc 
connecting the node to the source is weighted by the 
normalized goodness-of-fit score of the pixel. The arc 
connecting the node to the sink is the complement of the 
normalized goodness-of-fit score. In addition, arcs connect 
each node with another node that represents an immediate 
neighboring pixel. The arc connecting two pixel nodes 
(not the source nor sink) is weighted by the complement of 
the pair-wise heterogeneity score between these two 
pixels. Thus, pixels that have similar goodness of fit 
scores will have arcs with large weights. 

 

 

 

4.3. Graph Cut Optimization 
Once the graph is initialized for a particular 

heterogeneous neighborhood, we use the maximum flow 
algorithm to eliminate arcs. The initial flow magnitude is 
the minimum residual capacity of any one arc. The flow 
into and out of a node is the weight of its incoming or 
outgoing arc respectively. Our incoming and outgoing arcs 
have the initial capacity. The graph cut optimization 
method has been widely used to solve energy 
minimization problems in computer vision [1][2][6]. 

At the start of each flow cycle a node connected to 
either the source or sink propagates the initial flow to all 
nodes that are either similarly labeled or unassigned and 
are connected to it via arcs that have a residual capacity 
greater than the flow magnitude. As the flow is propagated 
to connected nodes, these nodes form either a source tree 
or a sink tree. The residual capacity of an arc is reduced by 
the flow magnitude. If the flow magnitude equals the 
residual capacity of an arc, that arc is saturated and 
therefore cut [1]. The residual capacity of a saturated arc is 
added to the total cost of the cut. At each iteration, the 
total cost of the cut is minimized. When all nodes are 
separated from either the source or the sink node via a cut, 
the optimization terminates. The nodes that are connected 
to the source node are identified as the interior nodes of 
the region. 

4.4. Classified region extracted as a feature 
The core of the region extraction algorithm depends on 

the ability to automatically extract the boundary pixels 
robustly. We maintain shape accuracy while minimizing 
the shape complexity wherever possible. To achieve this 
we divide the task into three steps. The first step extracts 
simply connected boundary segments that can be 

Figure 4: Diagram of graph initialized at each heterogeneous 
neighborhood. 

Figure 3: For the harbor data, this image depicts the difference at 
each point between the spectral signature of the pixel and the 
spectral signature of the seed. Low intensity values signify 
proximity in spectral feature space to the seed pixel. 
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unambiguously labeled as being on the positive side of the 
region or on the negative side. (Positive/negative is 
relative to the vector defined by the start and end point of 
the segment, using the right-hand rule.) The second step 
consists of a greedy algorithm that connects segments with 
the same orientation that are close and satisfy certain 
quality metrics. The third step simplifies the contour such 
that only vertices that are relevant to shape preservation 
within a user-specified tolerance are maintained.  

To extract simply connected segments, we identify the 
nodes of each instantiated graph which has a cut in the arc 
connecting it to its neighbor. Simple boundary segments 
are formed by following the points which are disconnected 
from its neighbors. The positive/negative designation is 
based on whether other interior nodes are along the 
positive side of the vector connecting boundary nodes or 
the negative side. 

Next, these simple segments are input to a greedy, 
stitching algorithm that iteratively takes an available 
segment and finds the closest simple segment that has the 
same positive/negative designation and fulfills edge 
consistency metrics. The edge consistency metrics 
discourage joining of edges that self-intersect or have a 
sharp angle at the join. For each region, the stitching 
algorithm terminates when the start and end segments are 
the best two remaining candidates to connect, resulting in 
a closed contour.  

Once the contour is closed, thus defining the extents of 
a region, we simplify the contour by removing vertices 
that have minimal significance to the overall shape of the 
region [3]. The significance of each vertex is determined 
by how much the local shape deviates if the vertex is 
removed. If the shape deviation is within a user specified 
tolerance, the vertex may be removed. Once these regions 
are extracted, insert them into a feature database.  
 

4.5. Implementation details 
Since local regions are optimized separately, disjoint 

regions may be processed in separate threads. The graph-
cut optimization only requires that memory for the graph 
is allocated once per thread. At each new neighborhood 
the graph is merely re-initialized with the appropriate 
scores. 
 We are able to extract multiple regions that are 
classified as disparate distributions. Currently we process 
one classification set at a time. We are expanding of our 
graph-cut algorithm to jointly optimize multiple 
classifications. 
 The back-end architecture of our software allows 
seamless interaction with neighborhoods that span tiles. 
Therefore, tiling does not hamper our algorithm. Typically 
we process large images, which consist of multiple 
1024x1024 tiles, within seconds on regular PCs. The 

actual processing time is highly dependent on the 
complexity of the region. 
 

5. Results 
Results of our spatially coherent region extraction 

algorithm are presented in the following figures. We 
extracted the water regions from the harbor image. The 
initial classification uses a user-specified seed pixel 
located in the water region. The seed pixel merely serves 
to identify the spectral signature of the region of interest. 
This manual seed identification is the only user 
intervention in the entire workflow. The characteristic 
spectral signature for the region of interest may also be 
input from an external process. Next, the entire image is 
processed by computing the spectral angle between the 
spectral signature of the seed pixel and the spectral 
signature of the each image pixel. The input to our module 
is the set of goodness-of-fit scores at each image. We use 
these scores to compute the heterogeneity measure for 
each pixel. Once the regions are clearly delineated, we 
extract them as features using the vectorization algorithm 
explained above. These extracted features are shown in the 
following figures. 

Figures 5, 6 and 7, illustrate that the boundaries of a 
region are non-trivial to extract accurately. With the 
graph-cut optimization, we can effectively remove 
spuriously classified pixels and, therefore, accurately 
represent the underlying shape of the region.  
The next set of results depict a different workflow that 
contains less manual intervention. The example image is a 
hyper-spectral image which contains mostly non-visible 
IR bands. In Figure 8, we have visualized 3 of the 189 
bands by inserting them into the standard red/green/blue 
channels. When dealing with this genre of imagery, it is 
critical that the software automate as much of the 
processing as possible since interacting with the sheer 
amount of data overwhelms most PCs. Thus we automate 
the selection of spectral signatures that represent disparate 
regions of interest. The user only intervenes to select a 
distance in spectral feature space that denotes the 
distribution span that will be considered the interior. 
Figure 9 shows the results of unsupervised k-means 
classification on this data. Note that this step identifies 
three spectral distributions which segment the image. 
Figure 10-11 shows our multi-class results on this hyper-
spectral image. One region (green) has a spectral peak 
around 1.2 micron wavelengths. The next region (orange) 
has a spectral peak around 2.3 micron wavelength and the 
third region (yellow) has a multi-modal distribution that 
peaks in the .5 micron and 1 micron wavelength range. In 
Figure 10, we have taken the representative spectral 
signature from the unsupervised clustering algorithm for 
each region but we have modified the distance threshold to 
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limit the extent of some of the regions. We do this to allow 
visualization of distinct areas and spatially contiguous 
features. Figure 11 shows the end result of our graph 
optimization and vectorization steps on each of the 
classified sets. 
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Figure 7: Water features extracted from the harbor image (in 
green) overlaid over the original harbor image. Notice that 
spurious regions are removed while small details are preserved, 
especially along the bridges and docks. 

Figure 5: Spatially coherent regions extracted after applying 
graph-cut optimization. Black regions denote water areas. The 
docks and water vehicles are preserved, while spuriously 
classified pixels are accurately incorporated into either the land 
or water regions. 

Figure 6: Result of graph-cut optimization to produce spatially 
coherent regions. Notice how the pixels that would have been 
spuriously labeled near the sandbar and on the land areas are 
cleaned. The details of the bridge, docks and water vehicles are 
preserved. 
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Figure 11: Extracted regions are overlaid onto the original 
image shown above. Notice how spurious regions are 
eliminated whereas legitimate small regions (such as the 
planes) are preserved. 

Figure 10: In this image, we have superimposed an overlay on 
the original mage showing the results of classification and 
thresholding using three distinct spectral signatures. Green 
overlay pixels denote pixels that are close to a spectral 
signature for strong near IR bands. Yellow pixels denote 
image locations that are strong in the visible and near IR. 
Orange pixels denote locations that are strong in the far IR 
range. Notice how spuriously classified pixels are present 
across the whole image. Taken as is, coherent region 
extraction would be difficult. 

Figure 9: Three distinct distributions are extracted using an 
unsupervised k-means clustering algorithm. In this image, the 
blue regions have a single peak in the far IR range, the red 
regions have a single peak in the near IR range and the green 
regions have a mixed distribution with a peak in the visible and 
near IR range.  

Figure 8: Visualization of some IR bands of a hyper-spectral 
image. We have put the visible red band in the green channel, 
a near IR band in the blue channel and the far IR band in the 
red channel. Different materials are prominent in different 
bands and can be classified accordingly. 
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