

Proc. IEEE CVPR2011 82 Copyright 2011 IEEE

Abstract

Extracting spectrally homogeneous regions as features

from hyperspectral and multispectral raster data has
unique challenges when accurate shape preservation is a
priority. We tackle this task by representing
neighborhoods that contain heterogeneously classified
pixels as a graph. We then use graph-cut based
combinatorial optimization to eliminate spuriously
classified pixels. After the region of interest is uniformly
classified, we use a vectorization step to extract it as a
feature.

1. Introduction
In remote sensing, one critical function for image

analysts is the capability to identify regions in imagery
that correspond to a particular object or material.
Automatic extraction of image areas that represent a
feature of interest requires two specific steps. The first
step is to accurately classify the pixels that represent the
region while minimizing misclassified pixels. Secondly, a
vectorization step extracts a contiguous boundary along
each classified region which, when paired with its geo-
location, can be inserted in a feature database independent
of the image.

We have implemented an algorithm, to be used by our
commercial customers, that extracts spatially coherent
regions which have been classified as a particular object or
material. We apply this algorithm to all types of imagery,
including standard 3-band, multispectral images, and
hyperspectral images which contain non-visible bands.
Robust automatic classification and coherent region
extraction is especially relevant for hyperspectral images
which have numerous bands making simultaneous
visualization and therefore manual intervention difficult.

While relying on traditional classification first to
identify matched pixels, our contribution lies in the next
step where we efficiently apply graph cuts based
optimization to eliminate spuriously labeled pixels and
extract spatially contiguous regions as intact features
[1],[6]. In this paper we explain how we use the

optimization method and also the feature extraction step.

2. Problem Description
The goal of classification algorithms is to label pixels

which have spectral signatures that fall within a
distribution defining a region of interest. A pixel belongs
to a classification set when the distance, in feature space,
between the pixel’s spectral signature and the signature of
a representative set of pixels is small. Classification
algorithms vary in how the feature vector (and therefore
feature space) is defined, how the distance metric is
defined, how a representative set of pixels or distribution
is determined and in the algorithm by which pixels
matches are identified. Nevertheless, they all share the
concept of goodness-of-fit, a per pixel score measuring
how well a pixel actually fits the target spectral
distribution. Examples of supervised and unsupervised
classification algorithms include clustering algorithms,
support-vector machines, matched filter algorithms and
neural networks to name a few [5]. Purely relying on
spectral signatures, may not lead to good spatial
localization of the pixels of interest. Spurious pixels could
easily fall on the wrong side of the classification criteria
and become incorrectly classified. Multiple spuriously
classified pixels will degrade coherent region extraction
[6].

In the context of our software, users are allowed to
determine class membership via supervised algorithms
such as spectral angle metric and matched filters. Also,
unsupervised classification algorithms are available to our
users such as general clustering and constrained energy
minimization. In addition, specialized algorithms such as
NDVI (Normalized Difference Vegetation Index) or
NDWI (Normalized Difference Water Index) are also
implemented. Due to the varied contexts that determine
which spectral classification is applied by our users, it is
critical to allow a user to select the appropriate algorithm.
Our goal is to provide a post-processing algorithm that
outputs spatially consistent regions that can function with
the goodness of fit metric of any classification algorithm.

Post-processing with filters or morphological operators
is often used to condition the classification results output

EXTRACTING SPATIALLY AND SPECTRALLY

COHERENT REGIONS FROM MULTISPECTRAL IMAGES
Farhana Bandukwala
BAE Systems - GXP

San Diego, CA
farhana.bandukwala@baesystems.com

Proc. IEEE CVPR2011 83 Copyright 2011 IEEE

from spectral classification algorithms. These post-
processing steps tend to adversely modify the details of
the region boundary and eliminate fine features. In our
application, users have a low tolerance for the loss of fine
details in the shape. Figure 1, is an example of a
multispectral image of a harbor. In this example, the docks
and pier are just a few pixels across and could easily be
removed in an erosion/dilation step in the presence of
enough spuriously classified pixels.

3. Algorithm Summary
Our goal is to accurately identify the boundary of a

spatially consistent set of pixels that belong to a region of
interest, with the intent of extracting that region as a
distinct feature. We aim to minimize spurious pixels,
while maximizing spatial consistency. Currently, we focus
on only a single classification set at a time. We use graph-
cuts based combinatorial optimization to explicitly
optimize the data and smoothing constraints [6]. Once
spatially contiguous regions are identified, we delineate
the boundary of the feature as a set of connected polylines
using a custom vectorization algorithm.

The input to our module is a set of scores, one per pixel

in an image. The score denotes how strongly a pixel
matched the target spectrum. The score, output from any
one of several classification algorithms available to our
users, measures the goodness-of-fit of a particular pixel.
Using the scores from a user selected classification
algorithm we compute a heterogeneity metric at each
pixel. Each point with a non-zero heterogeneity metric
serves as the center point of a neighborhood at which a
graph will be initialized and which will be optimized to be
spatially coherent. Using graph-cuts combinatorial
optimization, we identify the partitioning of that
neighborhood into pixels that either belong to the interior

of the region of interest or to the exterior.

4. Algorithm Details

4.1. Identifying heterogeneous pixels
Once we have a goodness-of-fit score per pixel, the first
step of our algorithm calculates how heterogeneous a
particular pixel is with respect to its 8 neighbors. The
heterogeneity measure identifies pixels that could
potentially be classified differently from their neighbors.
Typically, these pixels have scores at the middle of the
distribution and could have easily flipped classification.
Therefore, we do not simply compute a difference
between the pixel’s score and its neighbor’s score. We
first identify if a pixel is statistically close to the threshold
that identifies region interior with region exterior. If the
pixel is close, we then use the difference in the score
between the pixel and its neighbors, normalized by local
standard deviation, as the heterogeneity measure. Thus at a
given pixel (i,j), the heterogeneity measure (H(i,j) below) is

H(i,j) = (1/(8sl))∑m,n|f(i,j)-f(m,n)|
where f(i,j) is the goodness-of-fit score of the pixel, f(m,n)

is the score at each neighbor and sl is the local standard
deviation. If a pixel’s score indicates that it either strongly
matched or strongly did not match the region of interest,
the heterogeneity measure will be zero.

Figure 1: Multispectral image of a harbor. In this example, our
goal is to extract the regions containing water, while preserving
fine details such as bridges and docks. Some areas on land have
bodies of water that we need to include; in the water there are
vessels that we need to exclude. Subsequent figures show results
of our algorithm in the rectangles delineated here.

Figure 2: The above two areas show the result of simply
classifying the water areas by spectral classification and then
using a threshold to denote interior (green areas) vs exterior. The
circles highlight areas containing many spurious classifications.

Proc. IEEE CVPR2011 84 Copyright 2011 IEEE

4.2. Graph initialized at heterogeneous
neighborhoods

At each point on an image where the heterogeneity
measure is non-zero, we initialize a graph representing the
data constraints and the homogeneity constraints on the
local pixel distribution. Processing local neighborhoods is
vital in our operational context for performance reasons.
Our users deal with large, tiled imagery that is impractical
to handle in its entirety. The spatial coherency constraint is
inherently local since we are considering areas, typically
at boundaries, with spuriously classified pixels. We justify
optimizing over local neighborhoods for this reason. In
our current implementation, the local neighborhood is
empirically set to 10% of the tile size. We are
investigating setting the neighborhood size (bounded by a
maximum) to include all locally connected, heterogeneous
pixels.

The nodes of the graph represent the pixels within the
neighborhood to be processed. Each node is connected, via
an arc, to a source node and a sink node. The arc
connecting the node to the source is weighted by the
normalized goodness-of-fit score of the pixel. The arc
connecting the node to the sink is the complement of the
normalized goodness-of-fit score. In addition, arcs connect
each node with another node that represents an immediate
neighboring pixel. The arc connecting two pixel nodes
(not the source nor sink) is weighted by the complement of
the pair-wise heterogeneity score between these two
pixels. Thus, pixels that have similar goodness of fit
scores will have arcs with large weights.

4.3. Graph Cut Optimization
Once the graph is initialized for a particular

heterogeneous neighborhood, we use the maximum flow
algorithm to eliminate arcs. The initial flow magnitude is
the minimum residual capacity of any one arc. The flow
into and out of a node is the weight of its incoming or
outgoing arc respectively. Our incoming and outgoing arcs
have the initial capacity. The graph cut optimization
method has been widely used to solve energy
minimization problems in computer vision [1][2][6].

At the start of each flow cycle a node connected to
either the source or sink propagates the initial flow to all
nodes that are either similarly labeled or unassigned and
are connected to it via arcs that have a residual capacity
greater than the flow magnitude. As the flow is propagated
to connected nodes, these nodes form either a source tree
or a sink tree. The residual capacity of an arc is reduced by
the flow magnitude. If the flow magnitude equals the
residual capacity of an arc, that arc is saturated and
therefore cut [1]. The residual capacity of a saturated arc is
added to the total cost of the cut. At each iteration, the
total cost of the cut is minimized. When all nodes are
separated from either the source or the sink node via a cut,
the optimization terminates. The nodes that are connected
to the source node are identified as the interior nodes of
the region.

4.4. Classified region extracted as a feature
The core of the region extraction algorithm depends on

the ability to automatically extract the boundary pixels
robustly. We maintain shape accuracy while minimizing
the shape complexity wherever possible. To achieve this
we divide the task into three steps. The first step extracts
simply connected boundary segments that can be

Figure 4: Diagram of graph initialized at each heterogeneous
neighborhood.

Figure 3: For the harbor data, this image depicts the difference at
each point between the spectral signature of the pixel and the
spectral signature of the seed. Low intensity values signify
proximity in spectral feature space to the seed pixel.

Proc. IEEE CVPR2011 85 Copyright 2011 IEEE

unambiguously labeled as being on the positive side of the
region or on the negative side. (Positive/negative is
relative to the vector defined by the start and end point of
the segment, using the right-hand rule.) The second step
consists of a greedy algorithm that connects segments with
the same orientation that are close and satisfy certain
quality metrics. The third step simplifies the contour such
that only vertices that are relevant to shape preservation
within a user-specified tolerance are maintained.

To extract simply connected segments, we identify the
nodes of each instantiated graph which has a cut in the arc
connecting it to its neighbor. Simple boundary segments
are formed by following the points which are disconnected
from its neighbors. The positive/negative designation is
based on whether other interior nodes are along the
positive side of the vector connecting boundary nodes or
the negative side.

Next, these simple segments are input to a greedy,
stitching algorithm that iteratively takes an available
segment and finds the closest simple segment that has the
same positive/negative designation and fulfills edge
consistency metrics. The edge consistency metrics
discourage joining of edges that self-intersect or have a
sharp angle at the join. For each region, the stitching
algorithm terminates when the start and end segments are
the best two remaining candidates to connect, resulting in
a closed contour.

Once the contour is closed, thus defining the extents of
a region, we simplify the contour by removing vertices
that have minimal significance to the overall shape of the
region [3]. The significance of each vertex is determined
by how much the local shape deviates if the vertex is
removed. If the shape deviation is within a user specified
tolerance, the vertex may be removed. Once these regions
are extracted, insert them into a feature database.

4.5. Implementation details
Since local regions are optimized separately, disjoint

regions may be processed in separate threads. The graph-
cut optimization only requires that memory for the graph
is allocated once per thread. At each new neighborhood
the graph is merely re-initialized with the appropriate
scores.
 We are able to extract multiple regions that are
classified as disparate distributions. Currently we process
one classification set at a time. We are expanding of our
graph-cut algorithm to jointly optimize multiple
classifications.
 The back-end architecture of our software allows
seamless interaction with neighborhoods that span tiles.
Therefore, tiling does not hamper our algorithm. Typically
we process large images, which consist of multiple
1024x1024 tiles, within seconds on regular PCs. The

actual processing time is highly dependent on the
complexity of the region.

5. Results
Results of our spatially coherent region extraction

algorithm are presented in the following figures. We
extracted the water regions from the harbor image. The
initial classification uses a user-specified seed pixel
located in the water region. The seed pixel merely serves
to identify the spectral signature of the region of interest.
This manual seed identification is the only user
intervention in the entire workflow. The characteristic
spectral signature for the region of interest may also be
input from an external process. Next, the entire image is
processed by computing the spectral angle between the
spectral signature of the seed pixel and the spectral
signature of the each image pixel. The input to our module
is the set of goodness-of-fit scores at each image. We use
these scores to compute the heterogeneity measure for
each pixel. Once the regions are clearly delineated, we
extract them as features using the vectorization algorithm
explained above. These extracted features are shown in the
following figures.

Figures 5, 6 and 7, illustrate that the boundaries of a
region are non-trivial to extract accurately. With the
graph-cut optimization, we can effectively remove
spuriously classified pixels and, therefore, accurately
represent the underlying shape of the region.
The next set of results depict a different workflow that
contains less manual intervention. The example image is a
hyper-spectral image which contains mostly non-visible
IR bands. In Figure 8, we have visualized 3 of the 189
bands by inserting them into the standard red/green/blue
channels. When dealing with this genre of imagery, it is
critical that the software automate as much of the
processing as possible since interacting with the sheer
amount of data overwhelms most PCs. Thus we automate
the selection of spectral signatures that represent disparate
regions of interest. The user only intervenes to select a
distance in spectral feature space that denotes the
distribution span that will be considered the interior.
Figure 9 shows the results of unsupervised k-means
classification on this data. Note that this step identifies
three spectral distributions which segment the image.
Figure 10-11 shows our multi-class results on this hyper-
spectral image. One region (green) has a spectral peak
around 1.2 micron wavelengths. The next region (orange)
has a spectral peak around 2.3 micron wavelength and the
third region (yellow) has a multi-modal distribution that
peaks in the .5 micron and 1 micron wavelength range. In
Figure 10, we have taken the representative spectral
signature from the unsupervised clustering algorithm for
each region but we have modified the distance threshold to

Proc. IEEE CVPR2011 86 Copyright 2011 IEEE

limit the extent of some of the regions. We do this to allow
visualization of distinct areas and spatially contiguous
features. Figure 11 shows the end result of our graph
optimization and vectorization steps on each of the
classified sets.

References
[1] Y. Boykov, O. Veksler and R Zabih, “Fast Approximate
Energy Minimization via Graph Cuts”, IEEE – PAMI, vol 23, no.
11, pp. 1222-1239, March 2001.

[2] Y. Boykov and V. Kolmogorov, “An Experimental
Comparison of Min-Cut/Max-Flow Algorithms for Energy
Minimization in Vision”, IEEE – PAMI, vol 26, no. 9, pp. 1124-
1137, 2004.

[3] D. Dori and W Liu, “Sparse Pixel Vectorization: An
algorithm and its performance evaluation”, IEEE – PAMI, vol
21, no. 23, pp. 202-215, March 1999.

[4] X. Hillaire and K Tombre, “Robust and accurate
vectorization of line drawings”, IEEE –PAMI, vol 28 no. 6, pp
890-904, June 2006.

[5] D. Lu and Q. Weng, “A survey of image classification
methods and techniques for improving classification
performance, International Journal of Remote Sensing, vol 28,
no.56, pp 823-870, March 2007.

[6] R. Zabih and V. Kolmogorov, “Spatially Coherent Clustering
Using Graph Cuts”, Proceedings of IEEE CVPR, 2004.

Figure 7: Water features extracted from the harbor image (in
green) overlaid over the original harbor image. Notice that
spurious regions are removed while small details are preserved,
especially along the bridges and docks.

Figure 5: Spatially coherent regions extracted after applying
graph-cut optimization. Black regions denote water areas. The
docks and water vehicles are preserved, while spuriously
classified pixels are accurately incorporated into either the land
or water regions.

Figure 6: Result of graph-cut optimization to produce spatially
coherent regions. Notice how the pixels that would have been
spuriously labeled near the sandbar and on the land areas are
cleaned. The details of the bridge, docks and water vehicles are
preserved.

Proc. IEEE CVPR2011 87 Copyright 2011 IEEE

Figure 11: Extracted regions are overlaid onto the original
image shown above. Notice how spurious regions are
eliminated whereas legitimate small regions (such as the
planes) are preserved.

Figure 10: In this image, we have superimposed an overlay on
the original mage showing the results of classification and
thresholding using three distinct spectral signatures. Green
overlay pixels denote pixels that are close to a spectral
signature for strong near IR bands. Yellow pixels denote
image locations that are strong in the visible and near IR.
Orange pixels denote locations that are strong in the far IR
range. Notice how spuriously classified pixels are present
across the whole image. Taken as is, coherent region
extraction would be difficult.

Figure 9: Three distinct distributions are extracted using an
unsupervised k-means clustering algorithm. In this image, the
blue regions have a single peak in the far IR range, the red
regions have a single peak in the near IR range and the green
regions have a mixed distribution with a peak in the visible and
near IR range.

Figure 8: Visualization of some IR bands of a hyper-spectral
image. We have put the visible red band in the green channel,
a near IR band in the blue channel and the far IR band in the
red channel. Different materials are prominent in different
bands and can be classified accordingly.

	1. Introduction
	2. Problem Description
	3. Algorithm Summary
	4. Algorithm Details
	4.1. Identifying heterogeneous pixels
	4.2. Graph initialized at heterogeneous neighborhoods
	4.3. Graph Cut Optimization
	4.4. Classified region extracted as a feature
	4.5. Implementation details

	5. Results
	References

