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ABSTRACT:

Photogrammetric analysis requires camera metadata (position, attitude, interior orientation, etc.), which is not available for all im-
ages. Modern commercial solutions for 3D reconstruction from images typically assume large amounts of purposefully-collected,
highly-overlapping imagery. In this article, a system is demonstrated for recovering a 3D scene from images of unknown origin,
by marking ground space axes, resecting a camera consistent with the markings, and then using the solved camera to collect 3D
measurements. The capability works with close-range (vanishing points) and long-range (parallel axes) imagery. Monte Carlo ana-
lysis is used to propagate measurement uncertainty of the vanishing lines to uncertainty of exterior and interior camera parameters,
which can then be used to quantify uncertainty of measurements in the 3D scene.

1. INTRODUCTION

Given information about the state of a camera (position, atti-
tude, optical characteristics) at the moment of image collection,
2D photographs can be used for 3D reconstruction, through
the application of standard techniques of projective geometry
(Hartley, Zisserman, 2003). 3D reconstruction of a bank from
security footage could support forensic estimation of the height
of the suspects, or the length of their weapons. Reconstruction
of a vehicular accident scene would enable measurement of dis-
tances between objects, or lengths of skid marks.

Before the advent of photogrammetric software that enabled ex-
ploitation of digital/digitized images, this kind of photogram-
metric analysis was conducted in hardcopy. Image prints were
blown up and covered with table-size sheets of acetate, and the
techniques detailed in (Williamson, Brill, 1990) were applied
by carving classical straightedge/compass geometric construc-
tions (vanishing lines, vanishing points, perpendicular lines,
circular arcs, etc.) into the acetate with a sharp stylus. Cam-
era parameters such as principal point, focal length, attitude
angles, and camera position can then be extracted from certain
points, lines, and angles in the construction. Along with the
constructive geometric method for recovering generic camera
parameters, analysts would have specific procedures for trans-
ferring known scale information from one element of the scene
to other locations and dimensions. For instance, a known hori-
zontal width of a window could be used to estimate the heights
of various persons standing in a room.

These hardcopy techniques for camera resection can be replic-
ated more efficiently with computer software. In the 1980s, as
computers became sophisticated enough to process and display
digitized imagery, the field of computer vision developed tech-
niques for automating this analysis (Magee, Aggarwal, 1984,
Williamson, Brill, 1989, Williamson, Brill, 1990, Caprile,
Torre, 1990, Hartley, Zisserman, 2003). In subsequent dec-
ades, as computers grew more powerful, academic and indus-
trial focus shifted to reconstruction of 3D scenes from large
numbers of purposefully-collected, highly-overlapping, same-
camera, fixed-zoom images, using techniques such as Simul-

taneous Location and Mapping (Durrant-Whyte, Bailey, 2006),
and Structure-from-Motion (Ullman, 1979, Forsyth, Ponce,
2003). A standout exception is Make3d (Saxena, Ng, 2008),
which reconstructs the camera and scene from ’superpixel’
groups of coplanar pixels, but is more geared towards aesthetic
and qualitative reconstruction of a 3D scene, rather than quant-
itative (precision mensuration).

Metric cameras (which are internally calibrated and collect
camera position and orientation with high precision) make the
task of 3D reconstruction much more efficient and accurate. But
even a metric camera would not support reconstruction of an
object in motion, such as a car on a revolving display platform
at an auto show, or an airplane during takeoff; the camera’s
pose information would support 3D reconstruction only of the
static environment surrounding the object in question. Recon-
struction of the moving object would require camera models
that are situated in the moving frame of reference of the body
of the moving object. Additional complexity arises with photo-
graphs from different cameras, or even of different instances of
the same type of object.

The goal of this work is to support precision mensuration of
objects images of unknown origin. Given user measurements
of parallel lines, a Python tool estimates vanishing points and
resects a camera and pose. Monte Carlo analysis is used to per-
turb and iterate the resection, yielding meaningful estimates of
the uncertainty of the resulting camera parameters. The cam-
era parameters can be imported for use in a tool that exploits
digital imagery, such as SOCET GXP® geospatial intelligence
software,1 enabling 3D navigation throughout the ground scene,
and determination of the 3D locations of pixels by projecting to
ground planes or triangulation with multiple images.

1©2020 BAE Systems. All Rights Reserved. ClearFlite, GXP, GXP
OpsView, GXP WebView, GXP Xplorer, SOCET GXP, and SOCET SET
are registered trademarks of BAE Systems. This document gives only a
general description of the product(s) or service(s) offered by BAE Sys-
tems. From time to time, changes may be made in the products or con-
ditions of supply. Approved for public release as of 04/27/2020; This
document consists of general information that is not defined as controlled
technical data under ITAR part 120.10 or EAR Part 772. 20200420-15.



2. METHOD

The first step in recovering camera models is to select a co-
ordinate system. A right-handed, orthogonal coordinate system
should be chosen, for which ground-parallel lines are observ-
able in all images. The conventions of this work are illustrated
in Figure 1, with ground axes chosen so that in the image per-
spective, X will be to the right, Y will be up, and Z will be
most into the camera. The image axes x, y are also indicated
in parallel in ground space. The image plane is shown in pos-
itive, in front of the focal center (rather than behind C in mir-
ror image). The perpendicular line segment from image plane
‘principal point’ (cx, cy) to C is the focal length f , in units of
pixels. Image z, out of the camera, completes a right-handed
orthogonal system with x and y. Camera rotation matrix R de-
scribes the rotation between XY Z and xyz.

Figure 1. The scene has right-handed axes X, Y, Z, with Z most
into the image, and X and Y projecting into image space as

nearly right and up. The image axes x and y are right and down
from the upper-left of the image, can be seen paralleled in

ground space. Image z is out of the camera.

3D points in the scene will be indicated with capital coordin-
ates like (X,Y, Z), and 2D image coordinates (pixels from the
image upper-left corner) will be indicated like (x, y). It is con-
venient to present coordinates as row-vectors in inline text, but
context may dictate they are actually used as column-vectors.

It is possible to observe the origin and lines parallel to the X ,
Y , and Z ground axes, as they appear in perspective in 2D im-
age coordinates. In long-range imagery (essentially infinite fo-
cal length), ground-parallel lines will also be parallel in image
space. In close-range imagery, ground-parallel lines will con-
verge to vanishing points. In either case, the configuration of
ground-space lines parallel to coordinate axes, as projected into
2D vectors in image space, uniquely determine the interior ori-
entation (focal length and principal point) and relative exterior
orientation (viewing direction and orientation) of the camera
with respect to the chosen coordinate system, leaving a degree
of freedom of unknown scale, or equivalently, unknown range
from the camera to the ground origin. Additional inputs such
as scale bars, or known/assumed focal ratio or range, suffice to
determine a complete pinhole camera.

2.1 Camera Matrix

The standard (Hartley, Zisserman, 2003) matrix representation
of a projective camera (equivalent to the photogrammetric col-

linearity equations (ASPRS, 1980)) uses a calibration matrix:

K =

f 0 cx
0 f cy
0 0 1


On the diagonal of K, f represents the focal ratio, in units of
pixels (the ratio between the focal length and the size of an in-
dividual pixel on the focal plane). PP=(cx, cy) are the image
coordinates of the principal point (where imaging rays are per-
pendicular to the focal plane). K summarizes the calibration or
‘interior orientation’ of the camera.

The pose or ‘exterior orientation’ is captured in a rotation-
translation matrix

Rt =
[
R|t
]
,

where R is a 3 × 3 rotation matrix, and t is the 3 × 1 focal
center, in the camera’s xyz frame of reference (note how the
image axes in Figure 1 are paralleled in ground space); if the
camera position in ground scene coordinates is (CX , CY , CZ),
then t = −RC and C = −R′t.

Multiplied together, K ·Rt is the ‘camera matrix.’ The projec-
tion of ground coordinates into image space is

xy
w

 = K ·Rt


X
Y
Z
1

 (1)

The 3-dimensional ground coordinates of a scene point
(X,Y, Z) are augmented with a fourth homographic scale co-
ordinate of 1, and after application of the 3 × 4 camera mat-
rix, the output is an image coordinate, also augmented with a
homographic scale. The actual 2D image coordinate to which
the ground coordinate projects is then (x/w, y/w). This ho-
mographic unscaling is well-defined everywhere except for the
camera center, which is the only point that yields w = 0. Points
behind the camera yield w < 0.

2.2 Vanishing Point Determination

If lines in any ground axis direction are not parallel in image
space, all lines corresponding to that axis converge to a vanish-
ing point. Depending on the range and the relationship of the
camera focal plane to ground axes, an image may exhibit van-
ishing points for 0, 1, 2, or 3 dimensions. The most general
case is 3-point perspective (3PP), which has all three vanishing
points (VPX, VPY, and VPZ); the scope of this paper does not
permit full treatment of 2-point and 1-point perspective, but the
principles are similar, and the reader is referred to (Williamson,
Brill, 1990). Long-range also generalizes 3PP, in the absence
of vanishing points.

For determining the image coordinates of vanishing points, if
only two line segments are provided, the vanishing point must
be estimated simply as the intersection of the line segments ex-
tended. Use of multiple line segments per axis adds redundancy
and allows averaging down of error. Due to camera imperfec-
tions and measurement error, multiple vanishing lines will not
intersect in a unique point. When a particular pair of vanishing
lines are very nearly parallel, measurement error can tilt them
so that their intersection is in the opposite direction. Measuring
as many vanishing lines as possible increases the possibility of
this problem. This work uses a least-squares solution for the



location of the vanishing point, from all of the measured line
segments simultaneously (Williamson, Brill, 1989), rather than
from individual pairs, allowing use of as many vanishing lines
as possible, for highest redundancy and accuracy.

Figure 2. (a) Parallel line segments extend to vanishing lines
which intersect at vanishing points. (b) The principal point is

located at the center of the vanishing point triangle, and vectors
∆X ,∆Y ,∆Z toward the vanishing points partially determine

the rotation matrix.

2.3 Principal Point and Focal Length

The geometry of 3PP is often described using a ‘Perspective
Pyramid’ (See Figure 3). The base of the pyramid is the tri-
angle formed by the three vanishing points. The principal point
(PP=(cx, cy) in calibration matrix K) can be found at the ‘cen-
ter’ of the triangle – the intersection of the three altitudes (lines
perpendicular the triangle sides, and through the opposite ver-
tices), as shown in Figure 2.

If the 2D image plane is augmented with a z dimension ortho-
gonal to the image plane (out of the camera towards the scene),
then the focal center of camera station lies directly ‘above’ or
‘behind’ PP=(cx, cy) at CS=(cx, cy,−f). Edges from CS to all
three vanishing points constitute the Perspective Pyramid. All
three angles between the edges emanating from the apex to-
wards the vanishing points are right angles, and the line from
CS to the principal point is perpendicular to the vanishing point
triangle and the whole image plane.

The vanishing point triangle and the principal point at its cen-
ter, can be estimated solely from ground-parallel line segments
which converge in image space. The height f of the Perspective
Pyramid is then determined by the constraint of right angles at
the apex. (Williamson, Brill, 1990) provide a geometric method
for determining f , by rotating one right-triangular face of the
Perpsective Pyramid into the image plane, and using geomet-
rical construction to determine the distance between the prin-
cipal point and CS.

Alternatively, f can be solved for algebraically using the ortho-
gonality constraint, for instance:

[(V PX, 0)− (cx, cy, f)] · [(V PY, 0)− (cx, cy, f)] = 0 (2)

Equation (2) can be solved for f using any two vanishing points.

2.4 Solving for Orientation

The orientation of the camera is determined by forming rotation
matrix R from the 3D vectors from the CS to the vanishing
points.

Figure 3. The ‘Perspective Pyramid’ is formed with the
vanishing point triangle as the base, and the apex ‘behind’ or

‘above’ the principal point. The apex is at a height such that all
three sides are right triangles, and that height is the focal length

f . 3D image space vectors Rx, Ry , Rz from CS to the
vanishing points form the rotation matrix.

Labelling the individual elements of Rt from (1), we can pro-
jectX-axis ground coordinate (X, 0, 0) into image space as fol-
lows:

f 0 cx
0 f cy
0 0 1

Rx
x Ry

x Rz
x tx

Rx
y Ry

y Rz
y ty

Rx
z Ry

z Rz
z tz



X
0
0
1

 (3)

=

f(XRx
x + tx) + cx(XRx

z + tz)
f(XRy

y + ty) + cy(XRx
z + tz)

XRx
z + tz

 (4)

≡ f

Rx
z + tz/X

[
Rx

x + tx/X
Rx

y + ty/X

]
+

[
cx
cy

]
(5)

By definition, VPX is limX→∞ of (5), so:

VPX =
f

Rx
z

[
Rx

x

Rx
y

]
+ PP

At this point, Rx
z is still unknown, but since[

Rx
x

Rx
y

]
= k(VPX− PP) (6)

for some constant k, the first two rows of Rx form a vector
parallel to VPX-PP. Similarly, the first two elements of rotation
matrix columnsRy andRz are parallel to VPY-PP and VPZ-PP.

The elements in the third row of R are determined by ortho-
gonality constraints (Ri · Ri = 1, Ri · Rj 6=i = 0). As shown
in Figure 3, the 3D vectors from the camera station to the van-
ishing points are mutually orthogonal since they are the rays
of the apex of the Perspective Pyramid, so it is clear that aug-
menting each (R∗x, R

∗
y) with a third dimension of f , and then

unitizing, will yield three orthogonal columns for R which re-
tain the property that, for each column, the first two elements
form a vector parallel to a vanishing direction. (Caprile, Torre,
1990) uses a similar analysis to determine the relative rotation



of the second image in a stereopair to the first.

Once R is known, orientation angles ωφκ can be determined
with standard methods (ASPRS, 1980).

2.5 Solving for Camera Position

At this point, K and R of (1) are determined, and all that yet
needs to be solved is camera position t.

Let the observed image coordinates of the ground origin be
(ox, oy), and without loss of generality, temporarily assume that
the range of the camera is tz = 1. Projecting the ground origin
into camera space by also substituting X = 0 into (4), it can be
seen that t is the solution of[

ftx + cx
fty + cy

]
=

[
ox
oy

]
This is a simple solution of two independent equations.

If t = (tx, ty, 1) causes camera KRt to project the ground ori-
gin correctly to (ox, oy), then it is easily shown that scaling the
camera position to t = (rtx, rty, r) continues to project the
ground origin into (ox, oy). This is a last remaining degree of
freedom in the range of the camera, or equivalently, the scale of
the 3D scene. The position vector can be scaled continuously to
make any particular length in the scene match any known or as-
sumed length. In addition, given camera position t in the cam-
era’s frame of reference, the camera’s position in the ground
frame of reference can be as C = −R′t.

2.6 2-Point Perspective and 1-Point Perspective

The scope of this article does not permit a full treatment of 2-
Point and 1-Point Perspective. They can be handled with tech-
niques similar to 3PP, except that they require additional in-
formation to compensate for additional degrees of freedom. For
instance 3PP is ambiguous only in scale, but 2PP has a degree
of freedom in one orientation angle. A photograph taken with a
perfectly horizontal camera results in vertical ground lines be-
ing parallel in image space, so vanishing point VPY retreats
to infinity. In this limiting situation, PP as the center of the
triangle has moved to a point on the horizon between finite van-
ishing points VPX and VPZ; but where exactly PP belongs on
that horizon cannot be determined without knowledge of the
orientation angle of some vertical or horizontal line segment.
Typically, this degree of freedom is resolved by constructing a
square around a known circular object in a principal plane (such
as a wheel or a manhole cover), and a 45-degree diagonal drawn
across the square. (Williamson, Brill, 1990) provides geometric
contructions that use the line segment of known orientation to
precisely locate PP on the VPX-VPZ horizon.

2.7 Long-Range Camera Determination

Recall that the apex of the Perspective Pyramid is the meeting of
three right angles (Figure 3). Increasing the focal length – while
maintaining the apex’s rigid cluster of right triangles – causes
the vanishing points that form the base of the pyramid to retreat
further outward, away from the finite extent of image space en-
compassed by the image. As a result, ground lines parallel to
the XYZ axes, projected into image space, become nearly par-
allel when viewed from within the bounds of the image. With
a long enough focal length, ground-parallel lines are practic-
ally parallel in image space – within human ability to locate

endpoints of line segments (at best 0.1 pixels). In long-range
cases like this, it is not critical to know the exact focal length;
an arbitrarily long focal length that produces practically-parallel
ground axes in image space is sufficient, as long as range is also
set to yield appropriate scale. The PP can be arbitrarily chosen
at the image center, since there are no differences in perspective
when moving around the image, and any required offset can be
taken up in camera position.

Since ground axes appear parallel in image space, there are
no vanishing points to measure, but the common direction of
all lines for the same ground axis serves the same purpose as
VP[XYZ]-PP in (6), allowing the same solution for R and ωφκ
as in section 2.4. To determine each of those VP[XYZ]-PP vec-
tors from multiple marked lines, line segments can be summed
as vectors and then unitized; this naturally weights longer lines
more and shorter lines less, which is appropriate because the
same amount of endpoint measurement error in a shorter line
segment causes more inaccuracy in determining the true direc-
tion of the vector.

Camera horizontal offset and range can be determined as in
section 2.5, ensuring that the ground origin projects to the
chosen/marked image coordinates, and the camera has the de-
sired scale.

2.8 Monte Carlo Determination of Covariance

All of the calculations above (vanishing points, determination
of PP and f from vanishing points, determination of attitude
from PP and the vanishing points, and horizontal shift and range
adjustment to match origin and scale) are subject to error, tra-
cing back to measurement error at the endpoints of the line
segments which must be extended and intersected to locate the
vanishing points. In a real-world photographic scene, however,
pixel quantization and viewing interpolation limit the accuracy
of human image coordinate measurement to no better than 0.1
pixels, in optimum conditions. Thus, it is desirable to propag-
ate this significant source of error into the space of the resulting
camera parameters.

This is done using a Monte Carlo simulation.2 Given a set of
line segment endpoint coordinates, and an estimate3 of meas-
urement error σ, the endpoints are all randomly perturbed using
a gaussian N(0, σ) distribution, and all of the calculations re-
peated with the perturbed measurements, yielding one sample
– a 9-vector of camera parameters (f, cx, cy, ω, φ, κ, tx, ty, tz).
The perturbation and calculation are repeated many times, and
the empirical 9×9 joint variance-covariance matrix is computed
for all of the samples.

Two notes are in order: First, because a measurement error
in the direction of the line segment has no effect on the line
segment’s extension or the solution of vanishing points, all
gaussian errors are applied in the direction perpendicular to
the line segments. Second, the computed covariance matrix is
completely dense, capturing important correlation information

2From the Latin Monte=Mountain, Carlo=Carl, as in “Even Carl
Friedrich Gauss would consider an analytical solution to be mountain-
ously hard.” A modern equivalent would be “I can’t be bothered to do it
analytically.”

3Measurement error can be assessed by repeatedly moving and re-
placing an endpoint, and computing the sample variance of the resulting
coordinates.



between camera parameters. The resulting dense parameter co-
variance matrix can be used by both for propagation of men-
suration error into ground space for mono or stereo exploita-
tion, or as an input to least-squares bundle-adjustment, ensuring
that all parameter corrections are assigned rigorously meaning-
ful weights.

2.9 Implementation

The method of camera recovery outlined above was implemen-
ted in Python.

The inputs for a 3PP resection are:

• A line segment (two pairs of image coordinates of end-
points) to serve as a scale bar along the X axis, and the
ground length l of that scale bar.

– The first endpoint of the scale bar is taken to be the
ground origin (0, 0, 0).

– The other end point is (l, 0, 0).

– This could be generalized to be a scale bar between
any specified 3D ground coordinates.

• Image coordinate endpoint pairs for at least two line seg-
ments in each axis.

• Measurement sigma and number of iterations for Monte
Carlo covariance estimation.

The outputs are:

• Vanishing point coordinates VPX, VPY, VPZ.

• Camera parameters PP, f , orientation angles ω, φ, κ, and
camera position (CX , CY , CZ).

• 9 × 9 covariance matrix estimated by Monte Carlo simu-
lation.

For 2PP cases, the input also requires a pair of endpoints of a
line segment known to be 45 degrees in the XY plane – again,
this could be generalized to a line segment of any known angle
in any known plane, but is most likely the diagonal of a square
circumscribed around the circular rim of a wheel.

For long-range cases, a minimum of only one line segment per
axis is required. A long-range resection also accepts the desired
long focal ratio.

The Python script is sufficiently quick to enable relatively large
Monte Carlo simulations, even single-threaded. Without Monte
Carlo covariance estimation, a single camera solution is prac-
tically instantaneous. For analytical cube tests (four ground-
parallel cube edges for each of the three vanishing points), the
covariance matrix for 1000 samples can be generated on a Len-
ovo P50 laptop with an Intel Core i7 2.7GHz processor, in 1.30
seconds.

3. RESULTS

3.1 Simulated Images

Synthetic images are generated of a 1m cube, and camera para-
meters are varied to understand their effect on the accuracy
of the resection process. The baseline image is seen in Fig-
ure 4. The cube is positioned from ground (0,0,0) to (1,1,1),
and is rendered into a 1000x800 image using a camera set up
as f = 1000pix, center PP, ω = 10◦, φ = 20◦, κ = 30◦,
from a position of (CX , CY , CZ) = (2,− 1

2
, 5) (this is t ≈

(−0.33, 0.24, 5.39) in the camera’s frame of reference).

Figure 4. Baseline image of a 1m cube. Edges are color-coded
by their axis direction, XYZ∼RGB. The origin is circled, and

the square around the opposite corner (1,1,1) illustrates the
extent of Figure 5.

Monte Carlo covariance estimation yields a 9 × 9 covariance
matrix. To distill that into a more succinct metric of error, par-
tial derivatives are computed of the ground-to-image projection
function, with respect to the sensor parameters, at the opposite
cube corner (1,1,1). The 9×9 covariance matrix in sensor para-
meter space is reduced to image space by outer-multiplying it
by the 2× 9 partial-derivative matrix, yielding 2× 2 covariance
in image space. For the baseline cube case, a reasonable 0.3
pixel measurement error sigma thus yields image space error:[

0.4088 −0.4602
−0.4602 2.2898

]
(7)

Figure 5 shows a scatterplot of 1000 reprojections, illustrating
the magnitude of covariance matrix (7). Note the center ellipse
captures 1σ error, with semimajor radius σy =

√
2.2898 ≈

1.54, semiminor radius σx =
√

0.4088 ≈ 0.64, and tilt due to
nonzero covariance/correlation. The outer two ellipses enclose
2σ and 3σ error regions.

Note that, while the scatter in Figure 5 is generated by dir-
ectly exercising the perturbed cameras, the ellipses are gener-
ated from the Monte Carlo camera parameter covariance, and
partial derivatives computed with the unperturbed camera. The
coherence of the ellipses with the scatter is evidence of correct-
ness for the Monte Carlo method.

The area of the 1σ ellipse is 1.54 · 0.64 · π ≈ 1 × π – equival-
ent to a circle of radius 1, so we will use this metric (the geo-
metric mean of the x and y error sigmas) as a 1-dimensional
summary of the error in the process, and call it an approxim-
ately 1-pixel reprojection error (a serendipitously round value)
for the baseline case.

Starting from the baseline configuration described above, vari-
ous settings are adjusted to examine their effect on accuracy.



Figure 5. 1000 reprojections using Monte Carlo perturbations of
the baseline model. The grid lines are individual pixels. The
ellipses are 1σ, 2σ, and 3σ ellipses for covariance matrix (7).

Figure 6 presents the effect on reprojection error of these devi-
ations from the baseline setup. Three different error response
curves are presented with a unified X axis, which indicates the
multiple of the baseline value that is used for the corresponding
parameter. The baseline case is indicated at the intersection of
the three curves (all three parameters at 1.0×baseline).

Figure 6. Simulated reprojection error for various configurations
of measurement error and vanishing line segments. The error

depicted in Figure 5 is the baseline case at the intersection of the
three curves.

Obviously, increased measurement error leads to increased re-
projection, which is illustrated in the increasing curve in Fig-
ure 6. Cutting measurement error to 1/3 of the baseline value
(to σ = 0.1 pixels) decreases reprojection error from 1.0pix to
0.32pix, and tripling to σ = 0.9 more than triples the reprojec-
tion error to 3.14.

The natural 1m length of the vanishing line segments is ranged
from 0.25 to 2.5m; just as a rifle offers smaller targeting error
than a pistol, longer line segments yield less reprojection error
than shorter; bracketing the 1pix baseline error with 2.1pix for
0.25m line segments, to 0.5pix for 2.5m segments.

The baseline number of line segments per vanishing point is the
four in each dimension that are naturally present in a cube. This
number is tested from the bare minimum of 2 (0.5×baseline)
to 10 (2.5×baseline), demonstrating that measuring additional
vanishing line segments also reduces error; however, doubling

or halving the number of line segments per axis exerts less of
an effect on reprojection error than line segment length, ranging
from 0.72 to 1.45 pixels of error.

The line labeled ‘Optimum’ uses the most error-reducing value
for each of curves in the Figure: σ = 0.1 pixel measurement
error, and ten vanishing line segments per axis, each of ground
length 2.5m. This most-optimistic configuration yielded a re-
projection error of 0.097 pixels.

3.2 Real Images

3.2.1 Close-Range Example: Multi-View from Images of
Different Volkswagen Things The Volkswagen Thing is per-
fectly suited to this analysis, with easily visible exterior lines in
three orthogonal directions. Two VW Things, and vanishing
lines, are displayed in Figure 7. In total, 35 images of VW
Things were chosen from the internet (Wikimedia commons,
2020). Images from the right side of the car were flipped to
simulate an equivalent image of the left side of the car. Cam-
eras were resected for each according to the methods above.
Scale was set to a 768mm door-to-door distance (based on a
spec value of 727mm for the width of the door opening in the
body, and scaled up using a 1PP image). The cameras were
marked with min/avg/max 15/26/39 vanishing lines and Monte
Carlo covariance took 1.4/3.4/11.0 seconds.

Figure 7. Two Volkswagen Things, viewed in 3-point
perspective, with ground-parallel lines marked. Z is chosen as
the dimension most into the image, completing a right-handed
coordinate system with X towards image-right, and Y towards

image-up.

Benchmark measurements for comparison are detailed in Table
1. It was not possible to identify both endpoints of each bench-
mark distance in all 35 images, because of perspective (images
from the back of the car cannot see the windshield in the front),
non-stock parts (custom bumpers or no bumpers at all), config-
uration (windshield folded down), blurriness, etc. The number,
average, and sigma of estimates for each benchmark are de-
tailed in Table 2. The L1 and L2 door width measurements
are almost proxies for the door-to-door distance (including the
pillar between the doors) that was used to set the scale of the
project; but the door-to-door scale bar was established between
the bottom corners of the doors, and the L1 and L2 door widths
were measured across the top of the doors.

Lengths (distances along the chosen X-axis) and heights (Y-
axis) are measured by simply projecting image coordinates to a
depth of Z = 0 in the ground scene, and computing the distance
between the ground points.

Widths (distances along the Z-axis) require an assumed ground
X value for the desired line. First, the desired line is extended in



Label mm Description
L1 727 Max width of door opening (front)
L2 727 Max width of door opening (rear)
L3 3780 Length of car (bumper to bumper)
H1 345 Distance between door hinges (front)
H2 345 Distance between door hinges (rear)
W1 1495 Width of car body
W2 1353 Inner width of windshield frame (bottom)
W3 1270 Inner width of windshield frame (top)

Table 1. Benchmark VW Thing dimensions, categorized as
Lengths, Heights, and Widths.

image space. Then the Y-axis ground line (X, 0, 0) + c(0, 1, 0)
is rendered in the image, and the intersection of the two lines de-
termines the X,Y values of the Z-axis line in question. The ex-
tended line is traversed to determine the values Zlo, Zhi nearest
the endpoints of the desired line segments, from which we com-
pute the desired length.

Known N Avg Err% Sig Multi Err%
L1 (727) 28 726 0.13 7.4 726 0.13
L2 (727) 20 719 1.10 13.1 726 0.13
L3 (3780) 30 3827 1.24 86.9 3730 1.23
H1 (345) 31 353 2.31 8.1 351 1.73
H2 (345) 31 354 2.60 9.5 351 1.73
W1 (1495) 15 1496 0.07 53.9 1520 1.67
W2 (1353) 15 1393 2.96 37.0 1393 2.95
W3 (1270) 10 1283 1.02 26.9 1294 1.89

Table 2. Comparison of monoscopic (average) and multiscopic
VW Thing measurements.

The 35 resected cameras were then formed into Frame sensor
models for exploitation in SOCET GXP geospatial intelligence
software, and then bundle-adjusted in Multi Sensor Triangula-
tion (MST). The bundle adjustment involved 41 tie points. The
two endpoints of the chosen scale were set to 3D control points
at ground positions (0,0,0) and (0.768,0,0). All of the endpoints
of the 8 benchmark measurements in Table 1 were included as
tie points. The remaining 41-2-16=23 tie points were distrib-
uted around the vehicle and along all three dimensions. All
nine camera parameters (three position, three orientation, fo-
cal length and principal point) were adjusted for all images,
weighted by the Monte Carlo covariance at σ=0.3pixels. The
aposteriori ground locations of the tie points were used to com-
pute the distances in Table 2.

Since Table 2 lists only average values of monoscopic meas-
urements, the spread of all the measurements are illustrated in
Figures 8 and 9.

3.2.2 Long-Range Example: Stereo from Chips of World-
View-1 Satellite Imagery Small extents of imagery in Las
Vegas, around the Stratosphere Tower were chipped out
of WorldView-1 satellite imagery, stripping all collection
metadata, and yielding dumb images with no geolocation or
perspective information.

Three ground axis directions were chosen, corresponding to
strongly visible features assumed to be orthogonal (given how
buildings are most usually constructed), as depicted in Figure
10. The Z dimension of interest is most clearly visible in the
tower, but also in other vertical building edges. The other chip
is not shown, but the tower (and all vertical structures) exhibit a
layover angle to the right, so the two images together are good

Figure 8. Monoscopic length (X-axis) estimates, in mm. L1 and
L2 use the left axis, L3 the right. Benchmark values are indi-
cated with —, and triangulated multiscopic estimates with ×.

Figure 9. Monoscopic width (Z-axis) and height (Y-axis)
estimates, in mm. Widths use the left axis, heights the right.
Benchmark values are indicated with —, and triangulated

multiscopic estimates with ×.

candidates for stereo exploitation. The published height of the
Stratosphere Tower is 350.2m.

The origin is chosen to be at a point that can reasonably be as-
sumed to be at the same elevation as the base of the tower. Ac-
tual WorldView-1 design parameters are ignored, and instead,
as mentioned above, an arbitrarily long focal length of 1000mm
is used together with a pixel size of 1µm, for a focal ratio of
106 pixels. The principal point is set arbitrarily (without loss of
generality) at the center of the chip.

Orientation is solved for using the technique in section 2.4. The
parallel vectors in each axis direction are used in place of vec-
tors from the principal point towards the vanishing points. Sec-
tion 2.5 is used to solve for camera horizontal offsets tx, ty .
Range tz is adjusted so that horizontal scale matches meas-
urements of the area from online maps (the two chips require
different ranges, since they were collected at different points
along the orbit of the WorldView-1 spacecraft, with different
slant ranges to the scene). Given a proper solution for the cam-
eras, vertical scale will thus also be correct.



Figure 10. Stratosphere Tower, imagery chipped from
WorldView-1 and marked with chosen ground origin (yellow

marker) and coordinate axes. A second chip is also used,
collected from a perspective such that the layover of the tower is

to the right.

The height of the tower is measured in each of the resected
images, using SOCET GXP geospatial intelligence software’s
monoscopic height measurement tool. In the image with the
left-leaning tower (shown in Figure 10), the height is measured
at 371.9m, an error of +6.20%. In the image with the tower
leaning right (not depicted), the height of the tower is signific-
antly underestimated at 309.5m (-11.6%).

After both long-range cameras are solved for, they are bundle-
adjusted together in SOCET GXP geospatial intelligence soft-
ware MST to improve stereo alignment for 3D exploitation. To
ensure the images align around a common 3D model, and not
just on the ground plane, tie points are included at a wide range
of heights; particularly at the tip of the tower’s spire, and around
the observation deck. After bundle-adjustment, the tip of the
spire is at Z=362.92m – that is, above the arbitrarily-chosen
origin at street level. That is 3.6% above the known height of
350.2m. Part of that error might be extra height delta to the
arbitrary origin, part will be from imperfect camera pose and
scale.

4. CONCLUSION

In this work, camera models are developed for images using or-
thogonal ground axes evident in the scene. The technique gen-
eralizes to various close-range cases, in which ground-parallel
lines converge to vanishing points in image space, and long-
range cases, in which ground-parallel lines are also parallel in
image space. The joint, correlated covariance of camera para-
meters is estimated with a Monte Carlo method based on meas-
urement uncertainty of the user-marked line segment endpoints.
The 3-point perspective case is examined with synthetic images,
verifying that the estimated Monte Carlo covariance is consist-
ent with simulated error. The techniques are then applied to
real images. In the close-range situation, thirty-five 3-point per-
spective images of different Volkswagen Thing automobiles are
used, and various recovered dimensions are within 3% or bet-
ter of the published specifications. A long-range case is con-
sidered using overhead views of the Stratosphere Tower in Las
Vegas, recovering the height of the tower to within 3.6% of the
published value. These techniques bear much promise for 3D
measurement from images of unknown provenance.
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