
[Type here] 

 

 

 
  

 

 Deducing 15cm detail from 30cm satellite 
images with Deep Learning  

 
 
 

By: Bingcai Zhang, Yen Luu, Kalyan Vaidyanathan, Fidel Paderes,  

Reuben Settergren, and Kurt de Venecia 



 

© 2021 BAE Systems. All Rights Reserved. 

Approved for public release as of 12/01/2021; 20211108-22.  Page 2 of 15 

 

 

 

1. Executive summary 
While the value of satellite imagery is highly dependent on image quality and 

resolution, these two components can now be enhanced through advanced Artificial 

Intelligence/Machine Learning (AI/ML) image processing techniques. Although 

algorithms used in image processing cannot create new information, we can use 

deep learning – a branch of AI – to create higher quality, higher resolution, 

Multispectral Images (MSI) from lower resolution satellite images, also known as 

super-resolution. A very successful and well-known example is the Zoom Video 

Communications, Inc. application, which uses deep learning to generate high quality 

and high resolution images without pushing a lot of pixels across the Web. Applying 

the same very deep Convolutional Neural Networks (CNN) in the geospatial domain 

(Kim et al., 2016; Shermeyer and Etten, 2019), we support manual and automatic 

imagery analysis workflows with superior-resolution satellite images.  

Very deep CNN used in AI/ML workflows can learn the transformations between 

different zoom levels of image pyramids, also referred to as Resolution Sets (RSets). 

The CNN can learn the transformations from the 2:1 RSet at a Ground Sample 

Distance (GSD) of 60cm to the full resolution image at a GSD of 30cm by minimizing 

the differences between ground-truth full resolution and the derived 2x zoom. After 

training, the learned transformation is applied to the 1:1 full resolution image 

transforming the pixels to 2x resolution. The learned transformations, i.e., a CNN 

model, has intelligence built in and can infer higher resolution images.    

Our case study indicates that the derivation of super-resolution images have the 

following advantages in imagery analysis workflows: 

1. Significantly improved AI/ML object detection accuracy (positional 

accuracy, dimensional accuracy, orientation accuracy, precision, and 

recall). 

2. Significantly improved manual feature extraction accuracy by allowing 

image analysts to place the extraction cursor at the precise feature edges 

and corners. 

3. Significantly enhanced manual object/target search and identification 

workflow because of high quality and higher resolution images. 

4. Enhanced image correlation for improvements in accuracy and quality in 

automatic terrain extraction for terrain analysis and navigation, and 

automatic tie point matching for triangulation and targeting. 

5. Benefits to all imagery analysis workflows and derived products which use 

satellite images.  
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For our case study, we used a WorldView-4 image (courtesy of Maxar) of 30cm GSD 

panchromatic (PAN) and 120cm GSD MSI covering Tokyo. For automatic object 

detection with DeepObject™ (Zhang, 2016, 2017a, 2017b, 2020, 2021), the average 

relative positional accuracy (object center position) is about 15cm for super-

resolution images vs. 30cm for panchromatic images. The precision has improved 

from less than 91.8% to 96.6% while the recall has also improved from 98.3% to 

99.6%.  

 

2. Deducing higher resolution pixels from lower resolution 

pixels 

Resolving higher quality pixels from lower resolution pixels becomes feasible with 

deep learning. “Image processing cannot create new information” is a long-held 

truth in remote sensing and photogrammetry. Deep learning CNN can learn the 

transformations from lower resolution images to a higher resolution image for 

millions of different cases, and we can then use these learned transformations to 

deduce even higher resolution images.  

The following explanation uses a simple example to illustrate how higher resolution 

pixels can be deduced from lower resolution pixels. 

In Figure 1, there are 12 pixels of GSD 30cm. These 12 pixels represent a vertical 

step edge in the middle (pixel intensities stepping up from 54 to 80). Averaging 4 

pixels into 1 pixel, we get 3 pixels of GSD 60cm (representing the 2:1 RSet). Given 

these three pixels of GSD 60cm, can we undo the information reduction and deduce 

the original 12 pixels of GSD 30cm? This is an ill-posed math problem and there is 

no single definitive solution. However, we use several iterations to demonstrate how 

to reliably interpret 12 pixels of GSD 30cm from 3 pixels of GSD 60cm. We use pixels 

with values 54 (p54) and 80 (p80) for this demonstration, which refer to the 

unknown values of the original 30cm pixels. The three pixels of GSD 60cm are 

denoted as p51, p67, and p83. The names ‘54’ and ‘80’ are just reminders of the 

ground-truth values we are trying to recover. 
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Figure 1. From 30cm GSD image (above) to 60cm GSD image (below), we average 4 pixels into 1 

pixel. In SOCET GXP®, we refer to the 30cm GSD as 1:1 RSet, and the 60cm GSD image as 2:1 RSet. 

 

In Figure 2, we split pixels of GSD 60cm into 4 pixels.  

P54 is computed as: 

p54 = w1 * p51 + w2 * p67 + w3 * p83, where w1, w2, and w3 are the weights for 

p51, p67, and p83 respectively. p80 = f1 * p51 + f2 * p67 + f3 * p83, where f1, f2, 

and f3 are the weights for p51, p67, and p83 respectively.  

It should be noted that the weights for the same p51, p67, and p83 are different for 

p54 and p80. In the first iteration of CNN training, w1 and f1 are initialized to 0.0, 

w2 and f2 are initialized to 1.0, and w3 and f3 are initialized to 0.0. We get p54 = 67 

= p80. The loss (the ground-truth value minus the inferred value) in both cases is 

+/-13. 
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Figure 2. Initially, we assign w1 and f1 to 0.0, w2 and f2 to 1.0, and w3 and f3 to 0.0. The deduced 

value p54 is 67 and p80 is 67. The losses are -13 and +13 respectively. In the next number of 

iterations, we adjust w1, f1, w2, f2, w3, and f3 such that the losses approach 0.0. The algorithms to 

adjust w1, f1, w2, f2, w3, and f3 based on losses are called gradient decent, which are the standard 

CNN algorithms. 

 

In Figure 3, we iteratively update w1, f1, w2, f2, w3, and f3 using gradient decent 

to minimise the losses. The losses may never converge to zero, which means we 

may never deduce a perfect, or 0-loss, higher resolution image, but CNN will enable 

us to achieve a good, or low-loss, recovery of the original image. The more training 

images we use, the closer we can get to perfectly recovering the original higher-

resolution image. 

 



 

© 2021 BAE Systems. All Rights Reserved. 

Approved for public release as of 12/01/2021; 20211108-22.  Page 6 of 15 

 

 

 

 

Figure 3. Iteratively update weights to minimize losses. The losses may never converge to 0. To 

keep sharp vertical step edge, an experienced image analyst would split the edge pixel with the left 

half using the left pixel and the right half using the right pixel. In other words, image analysts split 

p67 by assigning p54 (left half) = 51 and p80 (right half) = 83. A CNN model trained by minimizing 

the loss function can learn the same higher-resolution behavior as a human image analyst. 

 

The CNN model learns the intelligence to preserve sharp vertical step image edges 

by minimizing the loss function. It’s very generic and does not have the specific 

concept of “vertical step image edge”. We can handcraft one algorithm for vertical 

step image edges, but we cannot handcraft one million algorithms to deal with one 

million other different cases. The CNN model learns all the transformations that 

occur between lower and higher resolution images, and then we can apply these 

learned transformations to our highest resolution imagery to deduce even higher 

resolution images (super-resolution). Although Figures 1, 2, and 3 are simple 

examples, they work in a similar fashion to the much more complex CNN model.  
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3. More accurate 3D measurements and more applications 

Image analysts using imagery for site monitoring, or geospatial analysts doing 

foundation-mapping, benefit with more accurate 3-D measurements from super-

resolution images. The super-resolution 15cm GSD MSI satellite imagery has more 

applications than the original 30cm GSD panchromatic images. In digital 

photogrammetry, accuracy and quality, also known as trusted GEOINT, are 

important factors when it comes to imagery exploitation and analysis. The resultant 

super-resolution imagery, which saves time while identifying objects in the area of 

interest, enhances the value of existing assets using the original-resolution satellite 

imagery. In Figure 4, the right image chip is from a super-resolution image of GSD 

15cm. The left image chip is from the original resolution pan-sharpened image of 

30cm GSD. In the right image, we can see circular edges (two rings) in the upper-

left corner, but that detail is completely blurred in the left image. After trying several 

image enhancement algorithms on the left image, the lower image represents the 

best image enhancement that traditional algorithms can achieve. There is more 

information in the super-resolution image than the pan-sharpened, and enhanced 

lower image chips. How do we call this “more information”? If we call this new 

information, then, we are violating the long-held belief that “image processing 

cannot create new information”. This ‘new’ information is not actually new, but 

rather it is intelligence that resides in all of the training data. A CNN is able 

to learn this intelligence, and apply it to other data.  
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Figure 4. Super-resolution images can provide more accurate measurements and have a wider 

application. For instance, assume there was a traffic accident between a bus and a car. From the 

super-resolution image, we know that the bus was driving within its lane, while we cannot make the 

same determination from the pan-sharpened image, even after image enhancement. The width of the 

lane marking is measured at 28cm from super-resolution image vs. 60cm from pan-sharpened image. 

Image © 2021 Maxar Technologies.   

 

Super-resolution images make searching and recognizing man-made objects easier 

for image analysts. As shown in Figure 5, the traffic “STOP” sign painted on a road 

is much easier to recognize from a super-resolution image (15cm GSD, satellite MSI) 

than from a panchromatic image (30cm GSD). An image analyst may need human 
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expertise to infer it must be a “STOP” sign from the panchromatic image, while it is 

easy to read “STOP” from the super-resolution image.  

  

Figure 5. Super-resolution images make searching and recognizing man-made objects easier. The 

right image is 15cm GSD, satellite MSI, deduced from the 30cm GSD pan-sharpen image on the left. 

The letters are much easier to recognize in the super-resolution image. CNN based super-resolution 

networks use AI to learn the transformations from lower resolution images to higher resolution 

images. Image © 2021 Maxar Technologies.   

 

4. Object detection accuracy comparison  

Super-resolution images of 15cm GSD improves AI/ML object detection accuracy. We 

collected 1,755 positive training samples and 5,967 negative training samples from a 

WorldView-4 image covering Tokyo, Japan representing a total area over 201 square 

kilometers. We trained two DeepObject models: (1) using super-resolution 15cm 

GSD images; and, (2) using panchromatic 30cm GSD images. Our test site was an 

area where there were 526 densely parked cars (Figure 6). Because the cars were 

so densely packed together, AI/ML algorithms will generally have difficulty 

separating them, particularly when the gap between them might be one pixel or 

might not be seen at all due to the obliquity in the image collection causing the 

ground between the cars to be occluded. As a result, when using the original 

panchromatic images with DeepObject, the precision of the results was 91.8%. 

When running the same test case using the super-resolution images (15cm GSD) 

instead of the original panchromatic images (30cm GSD), DeepObject achieved a 

precision of 96.6%.  
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 True positive False positive Recall Precision 

Average 

positional 

errors 

Panchromatic 

(30cm GSD) 
517 46 98.3% 91.8% 30cm 

Super-resolution 

(15cm GSD) 
524 18 99.6% 96.6% 15cm 

 

Table 1. Object detection accuracy comparison. With the same training samples of 526 small 

vehicles, we trained two models: (1) with super-resolution images of GSD 15 cm; and, (2) with 

panchromatic images of GSD 30cm. We discovered the recall results, which are defined as 

true_positive/total_objects, and the precision results, which are defined as 

true_positive/(true_positive + false_positive)” have both significantly improved.  

 

 

Figure 6. Object detection accuracy evaluation site. Because the 526 small vehicles in this area 

are densely parked, it is challenging for automatic object detection to individually identify these 

vehicles. Therefore, DeepObject was used for the accuracy evaluation. Image © 2021 Maxar 

Technologies.   
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Figure 7. Object detection accuracy in an original panchromatic image of 30cm GSD. There are nine 

false negatives (or missing detections, yellow boxes) and more than 46 false positives (red 

boxes). The recall is 98.3% and the precision is less than 91.8%. Many bounding boxes are not 

precisely covering vehicles because the average positional accuracy is 30cm. For example, when two 

bounding boxes cover the same vehicle, we do not count one of them as false positive. As a result, 

the precision is actually lower than 91.8%. Image © 2021 Maxar Technologies.   
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Figure 8. Object detection accuracy in a super-resolution image of 15cm GSD. There are two false 

negatives and 18 false positives. The two missing detections are black vehicles. The recall is 99.6% 

and the precision is 96.6%. Bounding boxes cover vehicles with much higher positional accuracy vs. 

bounding boxes in Figure 7, because the average positional accuracy is 15cm. Image © 2021 Maxar 

Technologies.   

 

Object detection with super-resolution images have significantly higher precision, 

recall, as well as higher positional accuracy. DeepObject has a specific model to 

estimate object centers. With a super-resolution image, the average center 

estimation error is about 15cm vs. 30cm for panchromatic images. The bounding 

boxes in Figure 8 vs. in Figure 7 show that: 

1. Super-resolution images can achieve higher positional accuracy for 

automatic object detection. 

2. Super-resolution images can separate objects, which are very close to 

each other, for automatic object detection. 

3. Super-resolution images can achieve significantly higher object detection 

precision than panchromatic images. 

4. Super-resolution images can achieve higher accuracy of estimating object 

lengths and object orientation angles. Bounding boxes in Figure 8 fit 

more precisely to vehicles than those in Figure 7.    

 



 

© 2021 BAE Systems. All Rights Reserved. 

Approved for public release as of 12/01/2021; 20211108-22.  Page 13 of 15 

 

 

 

5. Conclusion 
 

Super-resolution based on very deep CNNs learns the transformations from lower 

resolution images to higher resolution images. These learned transformations, also 

known as AI, can be used to create higher resolution images from original imagery. 

Super-resolution 15cm GSD, satellite MSI enhance the value of original 30cm GSD 

satellite images. With higher resolution, the images become relevant for more 

applications allowing image analysts to search and find man-made objects more 

easily. 

 

Super-resolution 15cm GSD satellite images can achieve higher measurement 

accuracy for manual feature extraction used in foundation mapping and 3-D 

modelling applications by resolving and using image edges and corners of man-made 

features. Since super-resolution images preserve image edges accurately, the 

manually extracted features have accordingly higher accuracy.  

 

Super-resolution satellite images can achieve much higher positional accuracy 

(object center positions and object orientation angles), recall, and precision than 

panchromatic satellite images for automatic object detection. Our case study found 

that the average relative positional accuracy (center position) is about 15cm for 

super-resolution images vs. 30cm for panchromatic images. Super-resolution images 

can achieve higher accuracy of object dimensions (object length) than panchromatic 

images when using DeepObject.  
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